
EECS C145B / BioE C165: Image Processing and
Reconstruction Tomography

Lecture 9

Jonathan S. Maltz

This handout contains copyrighted material. It is for

personal educational use only. Do not distribute.

jon@eecs.berkeley.edu

http://muti.lbl.gov/145b

510-486-6744

1

Topics to be covered

1. Basic concepts in tomography

2. Non-diffracting radiation

3. x-ray contrast and basic physics

4. x-ray projections

5. The Radon transform

6. The sinogram

7. Properties of the Radon transform

8. Review of polar coordinates

9. The Fourier slice theorem

10. The backprojection operator

11. Backprojection of filtered projections

2

Reading

Assigned reading:

• Course Reader, pp. 6-23, 26-27, 29-31, 77-108, 138-166.

Additional reading:

• Cho, “Foundations of Medical Imaging”, John Wiley and Sons

(1993), Chapter 3.

• Bracewell pp. 517-538.

Advanced reading:

• Natterer, “The Mathematics of Computerized Tomography”,

John Wiley and Sons (1986), Chapters I and II.

3

Tomography with non-diffracting sources

Definition: Tomography is the process of taking measurements on the

outside of a body and using these measurements to construct

cross-sectional images of the inside of that body.

Etymology: The Greek word “tomos” means “section”. Tomography

allows us to visualize the cross-sections of a body without cutting open

and sectioning the body.

Definition: Computed tomography (CT) involves the taking of

measurements outside a body that are then fed to a computer that

reconstructs cross-sectional images of the inside of that body (This term

was coined in 1975).

Definition: Non-diffracting radiation travels through a specific

medium along straight lines.

Examples of radiation that travel in straight lines (to good

approximation) are x-rays and gamma rays through the entire human

body, and ultrasound through soft tissue such as the breast.

4

Transmission and emission tomography

In transmission tomography radiation from sources outside the

body is directed inside the body. Detectors on the outside of that body

measure the radiation that comes out of that body as a consequence of

the applied radiation. Using knowledge of the applied and measured

radiation, cross-sectional images are constructed.

Examples:

1. x-ray computed tomography (x-ray CT)

2. Magnetic resonance imaging (MRI)

3. Ultrasound tomography

4. Optical fluorescence imaging

5

Transmission and emission tomography

In transmission tomography, incident x-rays are attenuated by matter

within the body. As a result, the amount of radiation that emerges from the

body varies in intensity depending on the amount of the material the radiation

traveled through, and the density of the material traversed. Contrast is based

on the x-ray attenuation coefficients of the matter in the cross-section (e.g.

bone attenuates x-rays much more than fat, so the two have strong contrast in

x-ray CT images).

6

Transmission and emission tomography

In emission tomography, radiation emanating from sources inside a

body is detected by sensors outside that body. Cross-sectional images of

the distribution of these sources are created based on these

measurements.

Examples:

1. Single photon emission computed tomography (SPECT) and

positron emission tomography (PET): Radioactive tracers that emit

gamma rays are injected into the body. Radiation detectors

intercept and count gamma photons that exit the body.

2. Optical bioluminescence imaging: A chemical that produces light

when it comes into contact with a second chemical is injected. When

the organism produces the second chemical, an exothermic reaction

occurs. Light produced in this way inside the body of the organism

is recorded by sensitive optical cameras. The organism must be in a

light-tight box.

7

Transmission and emission tomography

In emission tomography, an injected radiotracer emits gamma

photons. These photons can be detected after they emerge from

the body. Using tomographic reconstruction algorithms, the

distribution of radiotracer in the body can be mapped. Contrast is

based on spatial differences in radiotracer concentration.

8

Tomography of non-diffracting and diffracting sources

• In this course, we will study mathematical methods for the
tomographic reconstruction of data produced by non-diffracting

sources.

• Tomographic reconstruction of complicated distributions (such as
animals) that are imaged using diffracting radiation is typically a

non-linear, underdetermined problem (more unknowns that

independent measurements). Until recently, the solution of this type

of reconstruction problem has been computationally infeasible.

Methods for the solution of these problems are beyond the scope of

this course.

• We will see that basic reconstruction of cross-sections from
projections is linear problem. Typically, we can always take more

independent measurements that we have unknowns. As a result, this

problem is usually overdetermined.

9

Introduction to x-ray CT physics

In x-ray CT, we have a photon source

that produces (in this case) a paral-

lel incident beam of uniform intensity

I0. We assume that the x-rays travel

along straight lines. The intensity I of

an emerging ray depends on the length

of its line of travel through the ob-

ject f(x), and the material properties

of f(x) along this line of travel.

10

x-ray projection physics

• Let µ(x) represent the attuenutation coefficient at a point x. Then
the intensity of an emerging beam I can be expressed in terms of an

incident beam of intensity I0 as follows:

I = I0 e
−

∫

L
µ(x) du

where L is the line of travel and u is the distance along this line.

• The units of µ(x) are (distance)−1 or “fractional attenuation per

meter” (m−1) in the metric system.

• Another unit often used is the Hounsfield unit (HU). A material

that has an attuenuation coefficient of 1 HU attenuates beam

intensity 1000 times more per unit length than water.

11

x-ray projections: Discrete case

In the general discrete case, when a ray travels through K materials,

each having attenuation coefficient µk, and has an interaction length of

lk with the kth material, the emerging intensity is given by:

I = I0 e
−

∑K
k=1 µk lk

12

x-ray projections: Discrete example

µ11

µ21

µ12

µ22 µ23

µ13
Id

Ic

f(x)

IbIa

I0

I0

Ia =
[[

I0 e
−µ11l

]

e−µ21l
]

= I0 e
−(µ11l+µ21l)

Id =
[[[

I0 e
−µ11l

]

e−µ12l
]

e−µ13l
]

= I0 e
−(µ11l+µ12l+µ13l)

Ic = I0 e
−

∑3
k=1 µ1k l

Ib = I0 e
−

∑2
k=1 µk3 l

13

x-ray projection physics

Many body structures and tissues possess attenuation coefficients that do not

overlap. Attenuation coefficient differences produce differential contrast in

attenuation maps of the distribution. It follows that these structures and

tissues may easily resolved as separate entities in an x-ray CT image. Figure

due to Linke (1990).

14

x-ray projection physics

Typical configuration of X-ray CT imaging instrumentation. Figure due

to Linke (1990).

15

x-ray CT: History

1917 Johan Radon (1887-1956), a Bohemian mathematician,

publishes a paper that establishes the mathematical

foundations for tomography.

1963 Allan Cormack at Tufts University popularizes the idea of

x-ray CT, but does not build a practical scanner.

1972 First practical scanner built by Hounsfield at EMI in

England.

1979 Cormack and Hounsfield receive Nobel Prize for their

contributions to this field.

16

x-ray projections

• The emerging intensity I is a non-linear function of µ(x):

I = I0 e
−

∫

L
µ(x) du continuous case, or

I = I0 e
−

∑K
k=1 µk lk discrete case

• We can transform I into a linear function of µ(x) by defining a single

x-ray projection measurement as

p = ln
I0

I

• For multiple rays, the function describing the collection of all projections is

p , p(θ, s) =

∫

L

µ(x) du

=

∫

x·θ=s
µ(x) dx

where θ is a unit vector perpendicular to the ray direction. The quantity s

is the radial distance from the origin along θ.

• The function p(θ, s) is called the Radon transform of µ(x).

17

The Radon transform

f(x)

s1 = x1 · θ1

x

θ1

p(θ = θ1, s)

x1

x2

x1

y

cos(θ)

sin(θ)

θ

θ1

θ

Geometry of the Radon transform R f(x) = p(θ, s) of a 2D distribution f(x).

In x-ray CT f(x) , µ(x). The projection at θ = θ1 is shown. The right

diagram shows the components of the unit vector θ in terms of the 2D

18

Cartesian coordinates x , x1 and y , x2.

19

The Radon transform

We will formalize the Radon transform in both vector form (valid for

N -dimensional distributions f(x)), and in scalar form for 2D distributions

f(x, y).

• The N -dimensional Radon transform may be described as:

p(θ, s) = Rf(x) =

∫

x·θ=s
f(x) dx =

∫

<N
f(x) δ(x · θ − s) dx

where x ∈ <N . The geometry is described in the previous figure.

• For x ∈ <2 we have:

p(θ, s) = Rf(x, y) =

∫

[

x
y

]

·θ=s
f(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ

(

x cos(θ) + y sin(θ)− s
)

dx dy

20

The Radon transform
The Radon transform of a 2D distribution f(x, y) is a set of line integrals called projections

p(θ, s). Shown here are three projections of f(x, y), each at a different angle θ with respect to the

x-axis. Note that θ = ∠θ.

21

The Sinogram

The set of projection measurements p(θ, s) is often visualized as an image

called the sinogram. Each row of the sinogram is an image representation of a

projection.

0

20

40

60

80

100

120

140

160

180

200

s

θ

Sinogram p(θ,s)

−0.5 0 0.5

0

50

100

150

200

250

300

350

22

The Sinogram: Properties

• The sinogram is periodic with a period of 360 degrees.
• Only half of the period of the sinogram is unique. Why?

• The sinogram get its name from the fact that each point in the x-y
plane becomes a sinusoid in the θ-s plane. To see this we take the

Radon transform of δ(x− x0, y − y0):

p(θ, s) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) δ
(

x cos(θ) + y sin(θ)− s
)

dx dy

=

∫ ∞

−∞

∫ ∞

−∞

δ(x− x0, y − y0) δ
(

x cos(θ) + y sin(θ)− s
)

dx dy

= δ
(

x0 cos(θ) + y0 sin(θ)− s
)

Thus the point (x0, y0) gets mapped to the curve:

s = x0 cos(θ) + y0 sin(θ)

which is a sinusoidal function of θ.

23

The Sinogram: Properties

Example: Below is an image of f(x, y) = δ(x− 0.3346, y − 0.0984):

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Distribution f(x,y)

−0.5 0 0.5
−0.5

0

0.5

24

The Sinogram: Properties

This point is mapped to s = 0.3346 cos(θ) + 0.0984 sin(θ):

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

s

θ
Sinogram p(θ,s)

−0.5 0.1 0.3 0.5

0

90

180

270

360

25

Radon transform: Properties in N and/or two dimensions

Property Distribution Radon transform Rf

Linearity f(x) =
∑

i fi(x) Rf(x) =
∑

iRfi(x)

Limited support f(x) = 0, |xi| > D/2 Rf(x) = 0, |s| > D
√
N/2

Symmetry f(x) Rf(x) = p(θ, s) = p(−θ,−s)
f(x, y) p(θ, s) = pθ(s) = pθ±π(−s)

Periodicity f(x, y) pθ(s) = pθ±2kπ(s), k ∈ Z
Translation f(x− x0) p(θ, s− x0 · θ)

f(x− x0, y − y0) p(θ, s− x0 cos(θ)− y0 sin(θ))

Rotation f(r,Tφ) p(Tθ, s), T: rotation matrix

f(r, φ+ θ0) pθ+θ0(s)

Scaling f(ax) 1
|a|
p(θ, as)

Mass conservation M =
∫

<N
f(x) dx M =

∫∞

−∞
p(θ, s) ds

26

Aside: Review of polar coordinates

It is possible to represent the position of a point in a space of any dimension by

specifying a direction unit vector θ (‖θ‖ = 1) and a distance along that vector r. In

2D, we have x = r cos(θ) and y = r sin(θ) where θ is the angle between θ and the

positive x-axis, measured counterclockwise. The function x = r θ1 is the equation of

a line through the origin having slope arctan(θ1). The variable r tells us how far

along θ1 to go to reach x.

27

Aside: Review of polar coordinates

When we wish to convert an integral over the x-y plane to polar

coordinates, we must introduce the Jacobian determinant into the

integral. This maps infinitesimal areas in the x-y plane to the r-θ plane.

This determinant is:

|J| =

∣

∣

∣

∣

∣

∣

∂x
∂r

∂x
∂θ

∂y

∂r

∂y

∂θ

∣

∣

∣

∣

∣

∣

Since x = r cos(θ) and y = r sin(θ) we have:
∣

∣

∣

∣

∣

∣

cos(θ) −r sin(θ)
− sin(θ) r cos(θ)

∣

∣

∣

∣

∣

∣

= r cos2(θ) + r sin2(θ) = r

The tranformation of the integrals is given by:
∫

<2

f(x, y) dx dy =

∫

S

∫ ∞

0

f(r, θ) |J| dr dθ =
∫

S

∫ ∞

0

f(r, θ) r dr dθ

where S is the unit circle.

28

The Projection Slice Theorem

• The projection slice theorem reveals a very interesting

relationship between the Radon and Fourier transforms.

• We will derive this theorem for 1D projections of 2D

distributions.

Theorem: The 1D Fourier transform of the 1D parallel

projection p(θ, s) is equal to the central slice, at an angle θ

with respect to the u-axis, of the 2D Fourier transform F (u, v)

of the distribution f(x, y).

29

The Projection Slice Theorem

30

The Projection Slice Theorem

Proof: The 2D Fourier transform (FT) of f(x, y) , f(x), x ∈ <2 is given

by:

F (ξ) =

∫

<2

f(x) e−2πx·ξdx =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) e−2π(ux+vy)dx dy = F (u, v)

where ξ = [u v]T . The FT of the projection at angle θ is:

Pθ(w) =

∫ ∞

−∞

p(θ, s) e−2πws ds

=

∫ ∞

−∞

∫

<2

f(x) δ(x · θ − s) dx e −2πws ds

=

∫

<2

∫ ∞

−∞

f(x) δ(x · θ − s) e −2πws ds dx

=

∫

<2

f(x) e−2πw x·θ dx

=

∫

<2

f(x) e−2πx·(wθ) dx = F (ξ = w θ) ¥.

31

The Projection Slice Theorem: Interpretation

We just found that:

F1

{

p(θ, s)

}

= Pθ(w) = F (ξ = w θ)

This means that the 1D Fourier transform of the projection along θ = θ1

is equal to the 2D Fourier transform of the distribution f(x) along the

vector θ1. Recall that ξ = w θ1 is the line through the origin along the

unit vector θ1.

In scalar form we have, equivalently (continuing from the last line of the

proof):

Pθ(w) =

∫

<2

f(x) e−2πx·(wθ) dx

=

∫ ∞

−∞

∫ ∞

−∞

f(x, y) e−2π(w cos(θ)x+w sin(θ)y) dx dy

= F (w cos(θ), w sin(θ)) = F (u, v)
∣

∣

∣

u=w cos(θ), v=w sin(θ)

32

The Projection Slice Theorem: Reconstruction

Exercise: Based on the projection slice theorem, find a method to

reconstruct f(x, y) given only its projections p(θ, s).

33

The Projection Slice Theorem: Reconstruction

0

2

4

6

8

10

12

u (cycles / image width)

v
(c

yc
le

s
/ i

m
ag

e
w

id
th

)

Filling Fourier space with 1D FT’s of projections (log |F(k,l)|)

−200 −100 0 100 200

−200

−100

0

100

200

In order to use the FFT to transform the discrete version of F (ξ), F (k, l), to

image space, it is necessary to interpolate the “assigned” values onto a square

grid. This is difficult and time-consuming. An alternative is to use a

non-uniform DFT, but this is also very slow.

34

The Projection Slice Theorem: Reconstruction

• In order to obtain f(x, y) from F (u, v), we need an infinite number

of projections.

• In practice, only a finite number are available.

• We can use interpolation to find values in between the radial lines
on which we have samples of F (u, v), but the interpolation at high

frequencies will be less accurate than at low frequencies?

Why?

How will this affect the reconstructed image?

35

Practical methods of inverting the Radon transform

• The projection slice theorem (PST) offers us a method of obtaining
a cross-section f(x) from its projections. This is the inverse of

applying the Radon transform to a distribution f(x) to get its

projections p(θ, s). Consequently, the PST is a method for

inverting the Radon transform.

• We will see that just by rewriting the projection slice theorem, we
can find the most commonly used practical method of performing

this inversion.

• Before we do this, we need to understand an operation that projects
the projections back into image space. This is called the

backprojection operator.

• We begin with an example.

36

The backprojection operator

37

The backprojection operator

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Distribution f(x,y)

−0.5 0 0.5
−0.5

0

0.5

0

5

10

15

20

25

30

35

40

45

50

x

y

Backprojection of projection at angle θ = 0 degrees

−0.5 0 0.5
−0.5

0

0.5

0

10

20

30

40

50

60

70

x

y

Backprojection of projection at angle θ = 45 degrees

−0.5 0 0.5
−0.5

0

0.5

20

40

60

80

100

120

140

160

180

200

x

y

Backprojection of projection at angle θ = 90 degrees

−0.5 0 0.5
−0.5

0

0.5

Here we see the individual backprojections of three different projections.

38

The backprojection operator

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Distribution f(x,y)

−0.5 0 0.5
−0.5

0

0.5

0

10

20

30

40

50

60

70

80

90

100

x

y

Backprojection of projections at angles 0, 45 and 90 degrees

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

After adding the results of only three backprojections, we can get some

idea of what the distribution looks like. However, we can see that no

matter how many individual backprojections we add, we will still have

“streak artifacts”. This is because projections are non-negative, so

adding more will not remove the blurring effect of backprojection.

39

The backprojection operator

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Distribution f(x,y)

−0.5 0 0.5
−0.5

0

0.5

10

20

30

40

50

60

70

80

90

x

y

Backprojection of all 64 unique projections

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

After backprojecting all 64 unique projections (for θ ∈ (0, 180)), we see
an elliptical object, but it is blurred and has a much greater intensity

than the true f(x).

Where have the streaks gone?

40

The backprojection operator

2

2.5

3

3.5

4

4.5

x

y

Log of backprojection of all 64 projections

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Taking the log of the backprojection image, we see the streaks are still

there.

41

The backprojection operator

We now define the backprojection operator mathematically. This

operator operates on all unique projections in the interval [0, 180) and

smears them out over real space.

fBP(x) = BP{p(θ, s)} ,
∫ π

0

p(θ, s) dθ

This equation says that the backprojection image fBP(x) will have a

value at point x1 that can be found by extending the line s = x1 · θ to
intersect each projection, recording the value of each projection at the

point of intersection, and summing these values.

For a finite number of projections I at angles defined by θi we have:

fBP(x) =
π

I

I
∑

i=1

p(θi, s = x · θi)

We normalize by the number of projections because of the mass

conservation property of the Radon transform. In other words, because

each projection contains all the “mass” in the distribution f(x).

42

The backprojection operator

Here two projections contribute to the backprojection image. Thus

fBP(x) = 1
2

[

p(θ1, s1 = x · θ1) + p(θ2, s2 = x · θ2)
]

.

43

The backprojection of filtered projections algorithm

(BPFP)

• The BPFP algorithm is the most commonly employed tomographic
reconstruction algorithm.

• Most texts call it the “filtered backprojection” (FBP) algorithm, but
this is a misnomer, as we will see.

• We begin by expressing f(x) in terms of its Fourier transform F (ξ).

Again, the vector ξ contains the Cartesian vertical and horizontal

frequency space coordinates u and v:

ξ =





u

v



 .

Using the expression for the inverse Fourier transform:

f(x) =

∫

<2

F (ξ) e 2πξ·x dξ

44

The backprojection of filtered projections algorithm

(BPFP)
We now convert to polar coordinates. This is easily achieved. We just

define a unit vector θ that lies along ξ and introduce a scalar w that tells

us how far along θ to go to get to ξ. Formally, ξ = w θ. We must also

introduce the Jacobian for the coordinate change:

|J| = w.

into the integral.

After the coordinate change we have:

f(x) =

∫

S

∫ ∞

0

F (w θ) e 2πwθ·x w dw dθ

=

∫

S

∫ ∞

0

Pθ(w) e
2πwθ·x w dw dθ

where we have used the projection slice theorem to make the

substitution:

F (w θ) = Pθ(w).

45

The backprojection of filtered projections algorithm

(BPFP)

Now, the outer integral sums over all direction vectors θ around the unit

circle S. However, we know that the Radon transform has the symmetry

property:

p(θ, s) = p(−θ,−s)
Consequently, we must also have:

Pθ(w) = P−θ(w).

Invoking the symmetry property of the FT: X(−ω) = X∗(ω) we have, in

addition:

Pθ(w) = P−θ(−w).

46

The backprojection of filtered projections algorithm

(BPFP)

Therefore, we can extend the limits on the inner integral to the entire

real axis and divide the result by two:

f(x) =

∫

S

∫ ∞

0

Pθ(w) e
2πwθ·x w dw dθ

=
1

2

∫

S

∫ ∞

−∞

Pθ(w) e
2πwθ·x |w| dw dθ

=
1

2

∫

S

∫ ∞

−∞

Pθ(w) |w| e 2πwθ·x dw dθ

Similarly, we can integrate over only the first two quadrants of the unit

circle, and multiply the integral by two to compensate:

= 2× 1
2

∫ π

0

∫ ∞

−∞

Pθ(w) |w| e 2πws dw dθ

(we have also now made the substitution s = θ · x).

47

The backprojection of filtered projections algorithm

(BPFP)

Let’s take a look at the final equation:

f(x) =

∫ π

0

∫ ∞

−∞

Pθ(w) |w| e 2πws dw dθ

Let’s define H(w) = |w|, and G(w) = Pθ(w).

f(x) =

∫ π

0

∫ ∞

−∞

G(w)H(w) e 2πws dw dθ

Taking the Fourier transform of both sides gives:

F (u, v) =

∫ π

0

G(w)H(w) dθ

Now, we recognise the integral over θ as the backprojection operator, so:

F (u, v) = BP{G(w)H(w)}

48

The BPFP algorithm

The equation

F (u, v) = BP{G(w)H(w)}

represents the Fourier domain filtering of the projections p(θ, s) by the

filter G(w) = |w|. If G(w) was equal to 1 at all frequencies w, we would
get:

f ′(x, y) = BP
{

F−1

{

G(w)
}}

= BP{p(θ, s)}
= fBP(x, y)

which is the blurred backprojection image (we can interchange the

Fourier and backprojection operators because they are linear). The

derivation we have just completed tells us that if we filter the FTs of the

projections with the filter H(w) = |w|, before backprojecting we will
get back the true distribution f(x, y).

49

The BPFP algorithm: The ramp filter

• The filter that we must apply to the projections H(w) = |w| is a
ramp in frequency.

• We know by the convolution theorem that since:

F (u, v) = BP{G(w)H(w)}

it must be that:

f(x, y) = BP{g(s) ∗ h(s)} = BP{p(θ, s) ∗ h(s)}

• What does h(s) look like? Because |w| is not square-integrable, it
does not have a Fourier transform. Instead, we can find the FT of a

square-integrable function that becomes |w| asymptotically:

H(w) = lim
ε→0

|w| e−ε |w|

The FT of this function is:

h′(s) =
ε2 − (2πs)2
(ε2 − (2πs)2)2 ≈ −

1

(2πs)2
for large s

50

The BPFP algorithm: The ramp filter

−2 −1 0 1 2
x 10

−6

−5

0

5

10x 10
11

h’
(s

)

radial spatial coordinate (s)

Approximate impulse response of
 the ideal ramp filter

h’(s)
1/(2π s)2

−5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

H
(w

)
=

 |w
|

spatial frequency (w)

Ideal ramp filter H(w) = |w|

51

The BPFP algorithm: The ramp filter

We can improve upon this approximate expression for the impulse

response.

• First, we reexpress the ramp filter as:

H(w) = |w| = w sgn(w)
2π

2π

where

sgn(w) =







1 for w > 0

−1 for w < 0

• Then we substitute this expression into the BPFP equation:

f(x) =

∫ π

0

∫ ∞

−∞

2πwPθ(w)
sgn(w)

2π
e 2πws dw dθ

52

The BPFP algorithm: The ramp filter

• Applying the convolution theorem, and taking inverse Fourier
transforms we get:

f(x) =

∫ π

0

F−1
1

{

2πwPθ(w)

}

∗ F−1
1

{

sgn(w)

2π

}

dθ

=

∫ π

0

∂p(θ, s)

∂s
∗ 1

2π2s
dθ

• For any function f(s):

g(s) =
1

2π2s
∗ f(s)

is the Hilbert transform of f(s).

• Filtering a projection pθ(s) with the ramp filter in the frequency
domain is thus equivalent to taking the Hilbert transform of the

derivative of same projection with respect to s .

53

The backprojection operator

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

y

Backprojection of all 64 unique projections

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−18

−16

−14

−12

−10

−8

−6

−4

−2

x

y

Log of backprojection of all 64 projections

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

We return briefly to the example of a distribution consisting of a single

point. When we backproject the projections of this point, we get the

impulse response of the backprojection operator. To get back the

original impulse f(x, y) = δ(x− 0.3346, y − 0.0984), we need to filter the
projections by the inverse of this impulse response.

54

The backprojection operator

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

−0.5
0

0.5
−0.5

0

0.5
0

0.1

0.2

0.3

0.4

0.5

x

Backprojection of all 64 unique projections

y

The impulse response of the backprojection operator is non-negative at all points. Thus, it is a

low-pass (averaging) filter. To undo the effects of this filter, we need a high-pass filter. The latter

must necessarily have some negative values.

55

The BPFP algorithm: Practical implementation

• The ramp filter has infinite support in the frequency domain. It is
therefore not possible to implement this filter in reality.

• In practical imaging, the imaging equipment will sample the
projections at a sample spacing of X distance units. This

corresponds to a sampling frequency of W = 1/∆s samples/distance

unit.

• The projections are thus bandlimited to W/2 cycles/distance unit.

• Because of the bandlimited nature of the projections, we can
truncate the ramp filter at W/2 cycles/distance unit.

• If the distribution contains fine detail that is smaller than the
sampling interval, how can we prevent this detail from being aliased

down to lower frequencies?

.

• If aliasing occurs, will the projections still be bandlimited?

56

The BPFP algorithm: Practical implementation

• The truncated ramp filter, also called the Ram-Lak filter, is defined as:

H(w) =







|w| for |w| < W

0 for otherwise

and can alternatively be expressed as:

H(w) =
W

2
rect

(

w

W

)

−
W

2
tri

(

2w

W

)

where:

tri(w) =







1−
|w|
W

for |w| < W

0 for otherwise

• The relevant FT pairs are:

A rect

(

w

W

)

À AW sinc(Ws)

A tri

(

w

W

)

À AW sinc2(Ws)

57

Aside: Definition and FT of the rect function

 0

A

−W/2 W/2

A rect(w/W)

w
 0

 0

AW

1/W 1/W

AW sinc(Ws)

s

58

Aside: Definition and FT of the triangle function

0

A

−W W

A tri(w/W)

w
 0

 0

AW

−1/W 1/W

A W sinc2(W s)

s

59

The BPFP algorithm: Practical implementation

• Introducing the linear and axis scaling factors we have:

W

2
rect

(

w

W

)

À
W 2

2
sinc(Ws)

W

2
tri

(

2w

W

)

À
W 2

4
sinc2

(

W

2
s

)

• Taking the inverse FT of H(w) gives the corresponding impulse
response as:

h(s) =
1

2
W 2sinc(Ws)− 1

4
W 2sinc2

(

W

2
s

)

;

60

The BPFP algorithm: Practical implementation

• To get the discrete form of h(s), the impulse response of the
truncated ramp filter, we set the sampling interval to ∆s = 1, and

evaluate h(s) at s = n∆s. This gives:

h[n] =















1
4

n = 0

0 n even

− 1
n2 π2 n odd

61

The BPFP algorithm: Practical implementation

−10 −5 0 5 10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

h(
s)

radial spatial coordinate (s)

Impulse response of truncated ramp filter

−W/2 0 W/2

W

H
(w

)

spatial frequency (w)

Truncated ramp filter

62

The BPFP algorithm: Practical implementation

• By inspection of the shape of the truncated ramp filter, anticipate
two of its shortcomings:

• What method that we studied earlier in this course would be useful
for improving the truncated ramp filter?

• What would we sacrifice if we effected this modification?

63

The BPFP algorithm: Practical implementation

Show schematically the flow of information in the BPFP algorithm.

Include schematics for both real space and frequency domain

implementations.

64

The BPFP algorithm: Example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Distribution f(x,y)

−0.5 0 0.5
−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

x

y

Reconstructed image of ellipse

−0.5 0 0.5
−0.5

0

0.5

We see that the reconstructed image, f̃[m,n] is a far better approximation to the original than

was the backprojection image. Note that the intensity of the ellipse is very close to the correct

amplitude. Owing to discretization, the finite number of projections and filter modification,

BPFP images always have some streak artifacts. In this example, the Ram-Lak filter was

multiplied by a von Hahn window to reduce noise amplification and ringing.

65

The BPFP algorithm: Practical implementation

Summary of ramp filter variants:

Ram-Lak Truncated ramp

Shepp-Logan Ram-Lak times sinc function

Lowpass cosine Ram-Lak times cosine

Hamming Ram-Lak times Hamming window

von Hahn Ram-Lak times von Hahn window

See p. 449 of Jain (p. 24 in the reader) for details.

66

The BPFP algorithm: “Black box” implementation in

Matlab

% This program draws a solid ellipse in

% image space, then projects this ellipse

% into projection space using Matlab’s radon().

% The image is then reconstructed using Matlab’s

% iradon()

% set ellipse parameters

a2 = .2^2; % square of 1st semiaxis radius

b2 = .05^2; % square of 2nd semiaxis radius

ori = 0; % orientation in degrees

x = 0.15 % position of x center

y = -0.3; % position of y center

intens = 1; % intensity

67

N = 512; % image side dimension

imDim = 0.5; % true image halfwidth

% make Cartesian grid to support ellipse

xAx = linspace(-imDim, imDim, N);

yAx = fliplr(xAx);

[xMesh, yMesh] = meshgrid(xAx, yAx);

% call custom function that fills an image with solid ellipses

[im, ind] = solidellipses(a2,b2,ori,x,y, intens, xMesh, yMesh);

numProj = 64; % set number of projections to take

% make projection angle axis for unique projections

theta = linspace(0,180-180/numProj, numProj);

% radon() is a Matlab built-in that performs 2D Radon transform

% is returns the transpose of the sinogram

68

[pT, sAxPre] = radon(im, theta);

% make radial Radon axis and scale to image dimension

sAx = sAxPre / max(sAxPre) * sqrt(2) * imDim;

% reconstruct image using Hahn filter and

% nearest neighbor interpolation to cope

% with the discretization

imRec = iradon(pT, theta, ’nearest’, ’Hann’);

69

Making images of solid ellipses in Matlab

% function [im, pixRegInd] = solidellipses(a2,b2,ori,x,y,

% intensity, xMesh, yMesh)

%

% This function places solid ellipses inside an image.

% It returns an image im and the indices of all points

% inside each ellipse

function [im, pixRegInd] = solidellipses(a2,b2,ori,x,y, ...

intensity, xMesh,yMesh)

% If only one intensity value is given, make all ellipses

% have this intensity

if length(intensity) < length(a2)

intensity = repmat(intensity, length(a2));

end

70

% initialize image

im = zeros(size(xMesh));

for i = 1:length(a2)

imPre = solidellipse(a2(i),b2(i),ori(i),x(i),y(i),...

intensity(i),xMesh,yMesh);

pixRegInd{i} = find(imPre==intensity(i));

% add this ellipse image to the output image

im = im + imPre;

end;

71

Making images of solid ellipses in Matlab

% function [im,ellInd] = solidellipse(a2,b2,ori,x,y,intensity,

% xMesh,yMesh)

%

% This function places a single solid ellipse inside an image

function [im,ellInd] = solidellipse(a2,b2,ori,x,y,...

intensity, xMesh, yMesh)

% initialize image

im = zeros(size(xMesh));

% translate origin to center of ellipse

xMt = xMesh - x;

yMt = yMesh - y;

72

% find points inside ellipse

ellInd = find((xMt*cos(ori) - yMt*sin(ori)).^2 / a2 + ...

(xMt*sin(ori) + yMt*cos(ori)).^2 / b2 <= 1);

% set all points inside ellipse equal to intensity value

im(ellInd) = ones(size(ellInd)) * intensity;

73

Implementing the discrete backprojection operator in

Matlab

% This program takes the projections of an ellipse

% and backprojects them. It uses a custom

% Matlab function backpro().

% It assumes the original image im and the transposed

% sinogram pT exist in the Matlab workspace

% initialize empty backprojection image

backIm = zeros(size(im));

% make an index vector for each projection

ind = 1:round(length(theta)/2);

% assign sinogram

p = pT.’;

74

imBP=[]; % make empty matrix to store

% backprojections of single projections

for i = 1:length(ind)

thisInd = ind(i);

thisTheta = theta(thisInd);

% find backprojection from projection i at angle i

imBP(:,:,i) = backpro(backIm, p(thisInd,:), thisTheta);

end

% sum all the backprojections and normalize by number

% of projections (each projection contains the entire

% mass of the distribution)

imBPSum = sum(imBP,3)/length(ind);

75

Implementing the discrete backprojection operator in

Matlab

Slow, easier to understand version of operator implementation:

function back2 = backpro(back, proj, theta)

% back2 = backpro(back, proj, theta)

%

% This function back projects a single projection vector ’proj’

% obtained at an angle ’theta’ into a real space backprojection array

% ’back’ with interpolation between samples in the projection; it returns

% the modified backproject array. The center of rotation is assumed to

% be at the center of the backprojection array and the center of the

% projection vector. The back projection array should be initialized

% to zero before backproj is called with the first projection vector.

% The angle is measured counterclockwise and zero corresponds to a vertical

% (column) sum of the backprojection matrix; the image is assumed to

% be viewed using the matlab image function which displays the lowest-

% numbered row at the top of the image.

%

% NOTE: The function backproj produces the same results and is

% much faster; it should be used instead of this function.

% Summary of variables used

% x, y Coordinates in backprojection array

76

% u Coordinate in projection array

% iu Integer part of u

% fu Fractional part of u

% xc, yc Center of backprojection array

% uc Center of projection array

% sint, cost Sine and cosine of theta

% Find sizes and compute some useful parameters

[nx,ny] = size(back);

m = max(size(proj));

xc = (nx+1)/2.0;

yc = (ny+1)/2.0;

uc = (m+1)/2.0;

sint = sin (theta*pi/180.0);

cost = cos (theta*pi/180.0);

% Loop over pixels in backprojection array

back2 = back;

for x = 1:nx

for y = 1:ny

% Find in projection, interpolate, and add to backprojection

u = uc + (xc-x)*sint + (y-yc)*cost;

iu = floor(u);

fu = u - iu;

if 1 <= iu & iu < m

77

back2(x,y) = back2(x,y) + (1.0-fu)*proj(iu) + fu*proj(iu+1);

elseif iu == m

back2(x,y) = back2(x,y) + (1.0-fu)*proj(iu);

end

end

end

78

Implementing the discrete backprojection operator in

Matlab

Faster, more difficult to understand version of operator
implementation:

function back2 = backproj (back, proj, theta)

% back2 = backproj(back, proj, theta)

%

% This function back projects a single projection vector ’proj’

% obtained at an angle ’theta’ into a real space backprojection array

% ’back’ with interpolation between samples in the projection; it returns

% the modified backproject array. The center of rotation is assumed to

% be at the center of the backprojection array and the center of the

% projection vector. The back projection array should be initialized

% to zero before backproj is called with the first projection vector.

% The angle is measured counterclockwise and zero corresponds to a vertical

% (column) sum of the backprojection matrix; the image is assumed to

% be viewed using the matlab image function which displays the lowest-

% numbered row at the top of the image.

%

% Here is a sample program using the backproj function, where nback

% is the desired size of the backprojection array and dangle is the

% angle increment between projections.

%

79

% [nang, nbin] = size(sinogram);

% back = zeros(nback, nback);

% for ang = 1:nang

% back = backproj(back, sinogram(ang,:), (ang-1)*dangle);

% end

% This version of backprojection has been somewhat optimized for speed

% and is thus somewhat difficult to understand; the alternate version

% backpro.m is slower but easier to understand.

% Summary of variables used

% x, y Coordinates in backprojection array

% u Coordinate in projection array

% iu Integer part of u

% fu Fractional part of u

% xc, yc Center of backprojection array

% uc Center of projection array

% sint, cost Sine and cosine of theta

% Find sizes and compute some useful parameters

[nx,ny] = size(back);

m = max(size(proj));

proj = [0; proj(:); 0; 0];

xc = (nx+1)/2.0;

80

yc = (ny+1)/2.0;

uc = (m+1)/2.0;

sint = sin (theta*pi/180.0);

cost = cos (theta*pi/180.0);

% Do the backprojection by columns of the backprojection array

back2 = back;

x = 1:nx;

for y = 1:ny;

u = uc + (xc-x)*sint + (y-yc)*cost;

iu = floor(u);

fu = u - iu;

iu = max(1, iu+1);

iu = min(iu, m+2);

back2(:,y) = back2(:,y) + (1.0-fu)’.*proj(iu) + fu’.*proj(iu+1);

end

end

81

